Progressive decrease of intramyocellular accumulation of H+ and Pi in human skeletal muscle during repeated isotonic exercise.

نویسنده

  • J Rico-Sanz
چکیده

The purpose of this study was to evaluate the hypotheses that accumulation of hydrogen ions and/or inorganic phosphate (Pi) in skeletal muscle increases with repeated bouts of isotonic exercise. (31)P-Magnetic resonance spectroscopy was used to examine the gastrocnemius muscle of seven highly aerobically trained females during four bouts of isotonic plantar flexion. The exercise bouts (EX1-4) of 3 min and 18 s were separated by 3 min and 54 s of complete rest. Muscle ATP did not change during the four bouts. Phosphocreatine (PCr) degradation during EX1 (13.3 +/- 2.4 mmol/kg wet weight) was higher (P < 0.01) compared with EX3-4 (9.7 +/- 1.6 and 9.6 +/- 1.8 mmol/kg wet weight, respectively). The intramyocellular pH at the end of EX1 (6.87 +/- 0.05) was significantly lower (P < 0.001) than those of EX2 (6.97 +/- 0.02), EX3 (7.02 +/- 0.01), and EX4 (7.02 +/- 0.02). Total Pi and diprotonated Pi were significantly higher (P < 0.001) at the end of EX1 (17.3 +/- 2.7 and 7.8 +/- 1.6 mmol/kg wet weight, respectively) compared with the values at the end of EX3 and EX4. The monoprotonated Pi at the end of EX1 (9.5 +/- 1.2 mmol/kg wet weight) was also significantly higher (P < 0.001) than that after EX4 (7.5 +/- 1.1 mmol/kg wet weight). Subjects' rating of perceived exertion increased (P < 0.001) toward exhaustion as the number of exercises progressed (7.1 +/- 0.4, EX1; 8.0 +/- 0.3, EX2; 8.5 +/- 0.3, EX3; and 9.0 +/- 0.4, EX4; scale from 0 to 10). The present results indicate that human muscle fatigue during repeated intense isotonic exercise is not due to progressive depletion of high energy phosphates nor to intracellular accumulation of hydrogen ions, total, mono-, or diprotonated Pi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Resistance and Progressive Training on HSP 70 and Glucose

Skeletal muscle may develop adaptive chaperone and enhancementdefense system through daily exercisestimulation. The present study investigated resistance and exhaustion training alters the expression of chaperoneproteins. These proteins function to maintain homeostasis, facilitate repair from injury and provide protection. Exercise-induced production of HSPs in skeletal muscle and peripheral le...

متن کامل

The Effect of Resistance and Progressive Training on HSP 70 and Glucose

Skeletal muscle may develop adaptive chaperone and enhancementdefense system through daily exercisestimulation. The present study investigated resistance and exhaustion training alters the expression of chaperoneproteins. These proteins function to maintain homeostasis, facilitate repair from injury and provide protection. Exercise-induced production of HSPs in skeletal muscle and peripheral le...

متن کامل

Effect of progressive resistance exercise on β1 integrin and vinculin protein levels in slow-and fast-twitch skeletal muscles of male rats

Introduction: Skeletal muscle is a flexible and ever changing tissue and the role of costameric proteins in its response to different stimuli is not well defined. The aim of this study was to investigate the effect of progressive resistance exercise on β1 integrin and vinculin proteins in fast and slow twitch skeletal muscles of male rats. Methods: Twelve male Wistar rats (weight: 298±5.2 gr...

متن کامل

Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.

A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and "basic" OXPHOS activity in heart than in skeletal muscle, beca...

متن کامل

Excitation-induced Ca21 uptake in rat skeletal muscle

Gissel, H., and T. Clausen. Excitation-induced Ca21 uptake in rat skeletal muscle. Am. J. Physiol. 276 (Regulatory Integrative Comp. Physiol. 45): R331–R339, 1999.—In isolated rat extensor digitorum longus (EDL) muscle mounted for isometric contractions, chronic low-frequency electrical stimulation was found to lead to an increased uptake of 45Ca (154% above control after 240 min) and a progres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 284 6  شماره 

صفحات  -

تاریخ انتشار 2003